Infrared single-photon detection with superconducting magic-angle twisted bilayer graphene
The moiré superconductor magic-angle twisted bilayer graphene (MATBG) shows exceptional properties, with an electron (hole) ensemble of only ~1011 carriers per square centimeter, which is five orders of magnitude lower than traditional superconductors (SCs). This results in an ultralow electronic heat capacity and a large kinetic inductance of this truly two-dimensional SC, providing record-breaking parameters for quantum sensing applications, specifically thermal sensing and single-photon detection. To fully exploit these unique superconducting properties for quantum sensing, here, we demonstrate a proof-of-principle experiment to detect single near-infrared photons by voltage biasing an MATBG device near its superconducting phase transition. We observe complete destruction of the SC state upon absorption of a single infrared photon even in a 16–square micrometer device, showcasing exceptional sensitivity. Our work offers insights into the MATBG-photon interaction and demonstrates pathways to use moiré superconductors as an exciting platform for revolutionary quantum devices and sensors.
Read the whole article by Di Battista et al. in Science Advances.